
ar
X

iv
:c

on
d-

m
at

/0
41

11
19

 v
1 

  4
 N

ov
 2

00
4

Localised magnetic excitations of coupled impurities in a transverse

Ising ferromagnet
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Abstract

A Green’s function formalism is used to calculate the spectrum of excitations of two neighboring impurities

implanted in a semi-infinite ferromagnetic. The equations of motion for the Green’s functions are determined in

the framework of the Ising model in a transverse field and results are given for the effect of the exchange coupling,

position and orientation of the impurities on the spectra of localized spin wave modes.
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1. Introduction

Solids are known to support a variety of elemen-
tary excitations, such as phonons, polaritons and
magnons. In order to model the behavior of these
excitations, one often makes the assumption that
the media in which they propagate can be treated
as a perfect crystal with infinite extension. This
approximation, however, does not alway give a re-
liable picture of the system. An example is given
by low-dimension media, such as ultra-thin films,
in which the presence of surfaces has been shown
to strongly influence their spectra of excitations.
That is also true for media containing impurities
or defects. These different behaviors occur due to
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the fact that the presence of interfaces or defects
in an otherwise ideal medium can modify the mi-
croscopic interactions in the material. Also, the
low dimensionality of the medium, together with
the presence of impurities, acts to break the trans-
lational symmetry of the system, causing signifi-
cant modifications on the propagation of the exci-
tations, and also allowing the existence of localized
excitation modes.

In the case of magnetic materials, the proper-
ties of localized excitations such as surface and im-
purity modes have been widely studied, theoret-
ically as well as experimentally [1,2,3,4] and sev-
eral models have been proposed to elucidate the
dynamics of these modes. Among these, the trans-
verse Ising model, in particular, has been shown to
give a good theoretical description of real materi-
als with anisotropic exchange (e.g., CoCs3Cl5 and
DyPO4) and of materials in which the crystal field
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ground state is a singlet [5].
The Ising model in a transverse field has been

applied to ferromagnets to obtain the spin wave
(SW) spectrum of semi-infinite media [6,7] and
films [8,9,10]. The SW frequencies associated with
the presence of a impurity layer in an otherwise uni-
form semi-infinite medium has also attracted at-
tention. In both cases the impurities, while break-
ing the translational symmetry along the direction
perpendicular to the surface of the media, were as-
sumed to be uniformly distributed along the plane
of the film layers. The results showed the presence
of localized impurity modes which were found to
depend on the position of the impurity layer within
the film, as well as on the strength of the exchange
coupling between the magnetic impurity sites. A
different aspect of this problem is to consider the
effect of the presence of localized impurities in the
medium. In the present paper we make an exten-
sion of the theory presented in Ref.[11], by consid-
ering the effect of several localized impurities in
an otherwise pure semi-infinite ferromagnet, in the
context of the transverse Ising model. Numerical
results are obtained by means of a Green’s func-
tion technique. The paper is structured as follows:
in section II the theoretical method is introduced.
Numerical results are presented and discussed in
section III. In section IV the main results are sum-
marized and conclusions are presented.

2. Model and Green’s function formalism

We consider a semi-infinite ferromagnet with a
(001) surface and a simple cubic structure (lat-
tice constant a). Two nearest- neighbor localized
impurities spins are taken to be embedded in the
medium at distance (n − 1)a from the surface
(where integer n ≥ 1). The localized spins are
described by the transverse Ising model and the
Hamiltonian of the system in the presence of an
external field can be written as

H = −
1

2

∑

l,m

JlmSz
l Sz

m −
∑

l

hlS
x
l (1)

where Sx
l,m and Sz

l,m are the x and z components

of the spin operator S, with S = 1

2
for all sites.

The first term in the right hand side of Eq. (1)
contains the contribution due to the exchange in-
teraction. Throughout this paper we assume that
the summation runs over nearest neighbor sites.
The second term on the right hand side of Eq. (1)
refers to the effect of the transverse magnetic field
in a given site l (this field is h for host sites in the
bulk and hS for host sites at the surface). For con-
venience, we shall re-express the Hamiltonian as
H = H0 + HI , where H0 is the Hamiltonian of a
pure host ferromagnet, whereas HI corresponds to
the perturbation caused by impurities.

HI = Hod + Ho′d′ + Hoo′ (2)

where the Hod (Ho′d′) terms contain the exchange
coupling between an impurity at a given site la-
beled o (o′) and its neighboring host sites. These
terms can be written as

Hod = −(Jo − J)
∑

d

Sz
dSz

o − (ho − h)Sx
o , (3)

Ho′d′ = −(Jo′ − J)
∑

d′

Sz
d′Sz

o′ − (ho′ − h)Sx
o′ , (4)

Hoo′ = −(JI − J)Sz
oSz

o′ . (5)

where the d (d′) index labels the nearest neigh-
bor host sites. The exchange constant assumes the
values Jo = J ′ (Jo′ = J ′′) for the interaction be-
tween the impurities and host sites in the interior
of the medium and Jo = J ′

S (Jo′ = J ′′
S) when both

sites are at the surface and J otherwise. Likewise,
the term Hoo′ in the Eq.(2) expresses the exchange
interaction between the impurities. The Zeeman
contribution in Eqs.(3) and (4) describes the effect
of the transverse magnetic field at the impurities,
ho and ho′ , which assume the values h′

S and h′′
S if

those are located at the surface of the medium, and
h′ and h′′ otherwise.

Since we are considering only nearest neighbor
spin interactions, we can distinguish two physically
distinct orientations for the impurities, namely:
one with the two impurities aligned along the x
axis, which we will refer to as the X case (Fig. 1a)
and another, Z case (Fig. 1b) with two impurities
aligned along the z axis. In order to obtain the ex-
citation spectra of these systems, we extend the
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Fig. 1. Representation of the interaction scheme for two
nearest neighbor impurities in a Ising ferromagnet in a
transverse field. The impurities (black circles) are exchange
coupled with each other and with their nearest neighbors
in the host medium, and may be aligned along (a) the x
axis or (b) the z axis.

formalism for a single localized impurity presented
in Ref.[11]. Thus, we start by defining the Green’s
functions 〈〈Sα

l ; Sβ
m〉〉ω, where α and β stand for

the Cartesian components of the spin operators
and ω is a frequency label. In the present paper,
we use the retarded commutator Green’s function
Glm(q‖, ω) = 〈〈Sz

l ; Sz
m〉〉

ω
. These functions must

satisfy the equation of motion [12]

ω 〈〈Sz
l ; Sz

m〉〉ω =
1

2π
〈[Sz

l , Sz
m]〉

+ 〈〈[Sz
l ,H] ; Sz

m〉〉ω .
(6)

Previous calculations for the pure system showed
that a second order phase transition should oc-
cur at a temperature TC , with tanh (h/2kBTC) =

h/3J , where kB denotes Boltzmann’s constant,
such that for T < TC the average spin orientation
at each site can have components in the x and y
directions, whereas for T > TC it lies along the x
direction. The presence of impurities in the sys-
tem is expected to change the critical temperature
to T i

C , which in some cases may be greater than
TC . In order to simplify the calculations, in this
work we focus on the high-temperature regime
(i.e. T > T i

C). The Green’s function for the pure
system can be obtained by solving Eq. (6) with
H replaced by H0. The solution, which describes
an ideal semi-infinite Ising ferromagnet (i.e., with
translational symmetry parallel to the surface), is
well known and is given by [13]

G0
lm(ω) = −

1

M

∑

q

G0
q‖

(ω) exp [q‖ · (rl − rm)],

(7)
where the vectors rl and rm indicate the positions
of two given sites l and m, q‖ ≡ (qx, qy) is an in-
plane wave vector and M is the number of sites
in any layer parallel to the surface. The Fourier
amplitudes of this function are found as

G0
q‖

(ω) =
1

2πJ(x − x−1)

×

(

x|n−n′| −
1 + x−1∆

1 + x∆
xn+n′

)

.

(8)

Here the labels n and n′ are layer indices for the
sites l and m, respectively (with n = 1 being the
surface layer.), and x is a complex number that
satisfies the condition

x + x−1 = [h2 − 4hJRxγ(q‖) − ω2]/hJRx (9)

where γ(q‖) is a structure factor that, in the case
of a simple cubic lattice, is given by γ(q‖) =
1

2
[cos(qxa) + cos(qya)]. In addition, when describ-

ing localized modes the condition |x| ≤ 1 must
also be fulfilled. The parameter ∆ in Eq. (8) con-
tains the information regarding the surface and is
given by

∆ =
ω2(hSRx

S − hRx) − hhS(hRx
S − hSRx)

hhSRxRx
SJ

− 4γ(q‖)

(

JS

J
− 1

)

,

(10)
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where, from mean field theory, we obtain the spin
averages at the bulk and surface as Rx ≡ 〈Sx〉 =
tanh (h/2kBT ) and Rx

S = tanh (hS/2kBT ), re-
spectively.

The presence of localized impurities in an other-
wise ideal medium acts to break the translational
invariance of the system. Consequently, the calcu-
lations for the impure system must be performed
in real space. By including the effects of the impu-
rity in the Hamiltonian and applying Eq. (8), one
can obtain a new Green’s function Glm(ω), which
is found to obey the equations

AljGlm(ω) = δlj−

2π

Rx
l

[Plj − Ulj − U ′
lj − U ′′

lj ]Glm(ω)

(11)

where

Alj =
ω2 − [h + (ho − h)δlo + (ho′ − h)δlo′ ]2

h + [h + (ho − h)δlo + (ho′ − h)δlo′ ]
δlj ,

Plj =
∑

p

JlpR
x
l δlj

Ulj =
∑

d

(Jo − J)Rx
l [δloδdm + δldδjo],

U ′
lj =

∑

d′

(Jo′ − J)Rx
l [δlo′δjd′ + δld′δjo′ ],

U ′′
lj = (JI − J)Rx

l [δlo′δjo + δloδjo′ ].

where the index o (o′) assumes the values 0 (2) for
each impurity site in the X case and 0 (6) in the
Z case (see Fig. 1). The second summation runs
over 5 neighboring host sites to either impurity. By
rewriting Eq. (11) in matrix form we obtain the
Dyson equation

[(G̃0(ω))−1 − V]G̃(ω) = I, (12)

where G̃0(ω) and G̃(ω) are square matrices
with elements given by (2π/Rx

l )G0
lm(ω) and

(2π/Rx
l )Glm(ω), respectively. I is the unit matrix,

V is an effective potential related to the impurity
term HI , with elements

Vlj =
ω2 − h2

h
δlj − Alj − Plj

− Ulj − U ′
lj − U ′′

lj .
(13)

Thus, Eq. (9) can be said to relate the matrix
Green’s function of the pure (G0(ω)) and impure
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Fig. 2. Localized spin wave frequencies as a function
of the exchange parameter Jo, for the X case, with
ho = ho′ = 0.65h and T = 2.5J/kB . The parameters are
Jo′ = 1.5J and JI = 0.25J when both impurities are at the
surface (solid lines), and Jo′ = 2.5J , JI = 0.25J when the
two impurities are at the second(dashed lines) and third
layers(dotted lines).

(G(ω)) systems. The spectrum of localized modes
is then found by numerically calculating the fre-
quencies that satisfy the determinantal condition

det[I − G̃0(ω)V] = 0 (14)

which gives the poles of the Green’s function for
the impure system.

3. Numerical Results

Impurities modes spectra were calculated as
functions of the exchange and effective field pa-
rameters. In order to assess the influence of the
position of each impurity on the excitation spec-
tra, we obtained numerical solutions of Eq.(14) for
impurities located at the surface of the medium
(layer 1) as well as deeper in the system (layers 2
and 3). Specifically, for the X case, we considered
three configurations, namely, we set n = 1 (both
impurities at the surface), n = 2 (both impurities
at the second layer) and n = 3 (both impurities at
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Fig. 3. Localized spin wave frequencies as a function of
the exchange parameter Jo in the upper impurity in an
Ising ferromagnet in a transverse field, for the Z case,
with ho = ho′ = 0.65h and T = 2.5J/kB . The parameters
are Jo′ = 1.5J and JI = 0.25J when the upper impurity
is located at the surface (solid lines), and Jo′ = 2.5J ,
JI = 0.25J when the upper impurity is at the second
(dashed lines) and third layers (dotted lines).

the third layer) according to the notation in Fig.
1a. Likewise, for the Z case, following Fig. 1b we
set n = 1 (i.e. one of the impurities at the surface,
the other at layer 2), n = 2 (one at layer 2, the
other at layer 3) and n = 3 (impurities at layers 3
and 4).

Figure 2 shows the local SW impurities spectra
for the X case, as a function of the exchange con-
stant for the coupling between one of the impuri-
ties and its neighboring host sites (Jo), while the
parameters for the second impurity are kept con-
stant. We have used Jo′ = 1.5J and JI = 0.25J for
n = 1, and Jo′ = 2.5J , JI = 0.25J for n = 2 and
3. The field parameters were ho = ho′ = 0.65h and
we used T = 2.5J/kB in all cases. The three sets
of branches correspond to the impurities located in
layers 1 (solid line), 2 (dashed line) and 3 (dotted
line). The impurities modes can be classified as res-
onance modes (i.e. those occurring in the SW bulk
band) and defect modes (those found outside the
bulk band). In this work we consider defect modes,

0.0 2.0 4.0 6.0
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n=3

Fig. 4. Localized spin wave frequencies as a function of
the exchange parameter Jo′ in the lower impurity in an
Ising ferromagnet in a transverse field, for the Z case, with
ho = ho′ = 0.65h and T = 2.5J/kB . The parameters are
Jo = 1.5J and JI = 0.25J when the upper impurity is lo-
cated at the surface (solid lines), and Jo = 2.5J , JI = 0.25J
when the upper impurity is at the second (dashed lines)
and third layers (dotted lines).

since these are easier to measure. Therefore we re-
strict the calculation to the region outside the bulk
SW band.

The lower limit of the bulk band is represented
in the graph by the horizontal line. In the absence
of the coupling between the impurities, the graph
would show a horizontal line (for the impurity with
J ′ constant) superimposed on the decaying curve
of the SW branch associated with the second im-
purity, which merges with the bulk band for low
values of Jo. The exchange coupling thus creates
a mode repulsion effect when Jo ≈ Jo′ . As ex-
pected, the magnitude of this effect depends on the
strength of the exchange coupling between the im-
purities. When both impurities are at the surface,
the lower coordination number causes a large fre-
quency shift in comparison with the other config-
urations.

The effect of the alignment of the impurities is
shown in Fig. 3, which presents results for the SW
frequencies in the Z case, as a function of the ex-
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change constant at the upper impurity, while the
remaining parameters were kept constant. For n =
2 and n = 3, the results are similar to the ones
obtained for X case, apart from a small frequency
shift. For n = 1, however, the branches are strongly
shifted. These results demonstrate that the influ-
ence of orientation becomes particularly important
for impurities close to the surface. This is a con-
sequence of the smaller number of neighbors, to-
gether with modified exchange parameters at the
surface.

Figure 4 shows results of frequency as a function
of Jo′ at the lower impurity in the Z case, with
the remaining parameters kept constant. In this
case, the exchange parameter being varied is asso-
ciated with the lower impurity (see Fig. 1), which
was assumed to be located at the second, third and
fourth layers. In contrast with the results of Fig.
3, the frequency branches are not found to merge
with the bulk band for low values of the exchange
parameter. Moreover, when the lower impurity is
localized at the second layer(solid line), the curves
show a larger shift in comparison with the remain-
ing configurations. This effect is a consequence of
the modification of the exchange parameters for
the upper impurity when located at the surface.

The influence of the local fields is shown next.
Figure 5 shows the local SW frequencies as a func-
tion of local field parameter ho at one of the impu-
rities, for the X case. The remaining parameters
are the same as in the previous graphs. The results
were obtained for n = 1 (solid lines), n = 2 (dashed
lines) and n = 3 (dotted lines). The graphs show
the mode repulsion, due to the coupling of the im-
purities. Also evident is a large frequency shift for
n = 1, due to the modified exchange parameters
at the surface. For fields larger than ho = 0.69 h
(n = 1), ho = 0.99 h (n = 2) and ho = 1.11 h
(n = 3), the upper frequency branches are found
to merge with the bulk band, thus becoming reso-
nance modes.

A similar graph is shown in Fig. 6, this time
for the Z case. The results were calculated for a
varying local field at the upper impurity. In con-
trast with the previous figure, the higher frequency
branches in the graph do not display any notice-
able frequency shift for low values of the local field.
On the other hand, the high frequency excitations

0.0 0.3 0.6 0.9 1.2
h’ / h

0.0

0.2

0.4

0.6

0.8

ω
 / 

J

n=1
n=2
n=3

Fig. 5. Localized spin wave frequencies as a function of
the local field parameter ho in one of the impurities, in
an Ising ferromagnet in a transverse field, for the X case.
The remaining parameters are the same as in the previous
graphs. The results were obtained for both impurities at
the first (solid lines), second (dashed lines) and third layers
(dotted lines).

are observed to become resonance modes for val-
ues of local fields that approximately the same as
in the X case.

Figure 7 shows a plot of frequency as a function
of the exchange coupling constant for the interac-
tion between the impurities (JI). The graph shows
results for both the X and Z cases, and the re-
sults were obtained for ferromagnetic (JI > 0) as
well as antiferromagnetic (JI < 0) coupling. For
the X case, we assumed that both impurities were
located at the surface of the system, whereas in
the Z case we considered the upper impurity at the
surface, and the lower one at the second layer. The
branches behave quite distinctly in each case, with
the results for the Z case displaying a large shift
in comparison with the other case. Also prominent
in the X case is a mode crossing that is found for
JI = −0.86J . In contrast, the results for the Z
case show no mode crossings, although the low fre-
quency is observed to have a maximum at JI =
−1.11J and the high frequency branch has a min-
imum at JI = −1.37J .
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Fig. 6. Localized spin wave frequencies as a function of the
local field parameter ho for the upper impurity, in an Ising
ferromagnet in a transverse field, for the Z case, when the
upper impurity is located at the first (solid lines), second
(dashed lines) and third layers (dotted lines).

4. Conclusions

We have presented a Green’s functions calcu-
lation of the SW frequencies of localized modes
associated with two coupled localized impurities
implanted in an otherwise ideal ferromagnet. The
results were obtained in the context of the Ising
Model in a transverse field and show the influ-
ence of the exchange coupling of the impurities on
the excitation spectra of the system. This coupling
modifies the spectra in relation to the results for
single impurities, especially when the coupling pa-
rameters for the interactions between the impu-
rities and the host sites are of the same magni-
tude. The results also point to a strong effect of the
orientation of the impurities on the localized SW
frequencies, especially when the impurities are lo-
cated close or at the surface. Further studies could
investigate the effect of the presence of the impu-
rities on thin ferromagnetic films, as well as the ef-
fect of their coupling and orientation on the critical

-3.0 0.0 3.0 6.0 9.0
JI / J

0.0

0.2

0.4

0.6

0.8

ω
 / 

J
Fig. 7. Localized spin wave frequencies as a function of
the exchange parameter JI for the coupling between the
impurities. The graph shows results for both the X case
(solid line) where the impurities are located at the surface
layer, and the Z case (dashed line) where one impurity is
located at the surface and the other in the layer below.
The remaining parameters are the same as in the previous
figures.

properties of the system as well as on the overall
magnetization of the material.
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